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ABSTRACT
Transcription makes speech accessible to deaf and hard of
hearing people. This conversion of speech to text is still done
manually by humans, despite high cost, because the qual-
ity of automated speech recognition (ASR) is still too low
in real-world settings. Manual conversion can require more
than 5 times the original audio time, which also introduces
significant latency. Giving transcriptionists ASR output as
a starting point seems like a reasonable approach to mak-
ing humans more efficient and thereby reducing this cost,
but the effectiveness of this approach is clearly related to
the quality of the speech recognition output. At high error
rates, fixing inaccurate speech recognition output may take
longer than producing the transcription from scratch, and
transcriptionists may not realize when transcription output
is too inaccurate to be useful. In this paper, we empirically
explore how the latency of transcriptions created by partic-
ipants recruited on Amazon Mechanical Turk vary based on
the accuracy of speech recognition output. We present re-
sults from 2 studies which indicate that starting with the
ASR output is worse unless it is sufficiently accurate (Word
Error Rate of under 30%).

Categories and Subject Descriptors
K.4.2 [Computers and Society]: Social Issues—Assistive
technologies for persons with disabilities
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1. INTRODUCTION
Audio captions provide access to aural content for people

who are deaf and hard of hearing in a wide range of different
domains, from classroom lectures to public speeches to en-
tertainment, such as movies and television. Unfortunately,
producing accurate captions automatically is not yet pos-
sible. As a result, human computation has become a pop-
ular approach to generating captions [8]. On crowdsourc-
ing platforms like Amazon’s Mechanical Turk, Crowdflower,
Crowdsource.org, and more, transcription tasks are one of
the most commonly available types of task. Several success-
ful approaches for organizing people to complete this task
have been proposed for both the online and offline settings
[1, 19]. However, while automated systems alone cannot
provide accurate captions in all settings, decades of work on
automatic speech recognition (ASR) has resulted in systems
that can effectively handle a variety of audio content with
reasonable accuracy [13, 28, 31]. This paper explores how
mixing these two sources of captions can be traded off by
studying the effect of error rates on workers’ ability to edit
partially-correct ASR captions.

To generate captions from scratch, workers must hear the
audio content and convert this content to text by typing.
It is important to note that, often, this can be done with
minimal cognizant processing of the content or meaning of
the speech itself. Editing content generated by an ASR sys-
tem requires less direct motor effort (typing), but requires
more cognitive activities involved in understanding the text
relative to the speech that is being listened to in order to
identify and correct mistakes. We expect this difficulty to
rise as the word error rate (WER) of automatically gener-
ated captions increases, because the difference between the
audio and caption requires more complex mental mapping.

Figure 1 shows different quality ASR transcripts for a
small clip from a TED talk [30]. It also shows the deletions
(red strike-through) and insertions (green words) steps that
the captionist must perform on these ASR transcripts to
match them to the words in the speech. We observe that for
a transcript with WER of 15%, very few insertions/ dele-
tions are required, while for a transcript with WER of 45%,
a lot of effort will be required in deciding which parts of
the ASR transcripts are to be deleted and where the new
words are to be added. In addition to a more complex map-



Figure 1: A typical 10 second utterance from a TED talk with corresponding ASR generated transcripts of
different Word Error Rates (WERs). These clips with different WERs were created in an ecologically valid
way by modifying the beam width of the ASR, which means the errors are similar to what we should see in
practice. A lower WER means higher quality. Possible correction steps to convert the erroneous transcripts
into the ground truth (at the word level) are also shown. Red (crossed out) words need to “deleted” and green
words need to be “inserted” into the ASR transcript. “Substitution” errors are corrected as a sequence of
“deletions” and “insertions”. While transcripts with low WER can be easily corrected, correcting a transcript
with high WER turns out to be time consuming. If WER is high enough, it can be better to transcribe from
scratch.

ping from the ASR transcript to the ground truth, increasing
WERs also make it difficult to spot mistakes. This is because
most ASRs are phoneme based and consequently, the incor-
rect words are often homonyms of the correct words, which
might trick the captionists into believing they are correct.
In such a scenario, it would seem that the ASR transcripts
have stopped being useful and the captionists are better off
transcribing everything from scratch, without any ASR sup-
port.

To explore the effects of ASR quality on captionist per-
formance, we designed and conducted 2 studies with par-
ticipants on Amazon’s Mechanical Turk. Importantly, we
modified the ASR directly to control its WER, which pro-
vided an ecologically valid set of clips with different WERs.
For each WER, we compare starting with the ASR output
to simply generating captions for the same audio segment
from scratch.

We find that while editing ASR output is significantly
faster when the accuracy is high enough, editing latency
quickly rises above the level at which workers can accurately
generate the content themselves. If the WER is high enough
(45% in our study), then workers identify how bad it is,
erase the text generated from the ASR, and simply type
from scratch.

Our work directly speaks to the likelihood of success in

prior systems in which people are tasked with correcting the
output of ASR [16, 9, 15]. Furthermore, it gives practic-
tioners a cut-off for expected WER after which they should
simply have people type from scratch.

Our contributions are:

• an ecologically valid result for the captioning task ex-
plored in this paper that might guide practictioners

• insight into how captionists interact with error-prone
ASR, suggesting that they are capable of detecting
WERs that are too difficult for them to correct

2. RELATED WORK
Our work is related to (i) automatic speech recognition,

and (ii) human computation and crowdsourcing.

2.1 Automatic Speech Recognition
Automatic Speech Recognition aims to generate text from

human speech with the help of computers. It has been a
topic of research for quite some time now and has seen huge
improvements in the past few decades [28]. Consequently, it
has evolved from desktop recognition in ideal recording con-
ditions, to mobile based recognition in real world settings
[14]. Most ASR systems in use today are statistical sys-
tems trained on huge amounts of audio and corresponding



Reference :   AND  DOCTOR  KEAN  WENT  ON.
Hypothesis:   AND  DEAR   DOCTOR  KEITH  WANTON.

After alignment

Reference :   AND    *******    DOCTOR    KEAN      WENT          ON
Hypothesis:   AND    DEAR    DOCTOR    KEITH     WANTON     ****
Errors        :                   I                                S               S              D

N is in the number of words in the reference.

Figure 2: Calculation of Word Error Rate. Hypoth-
esis is the word sequence generate by the speech rec-
ognizer while reference is the word sequence present
in the speech. First, the reference and hypothesis
are aligned using dynamic alignment. This align-
ment allows us to calculate the insertions (I), dele-
tions (D) and substitutions (S) errors. Word Error
Rate is calculated by taking ratio of the sum of these
errors with the total number of words in the refer-
ence.

texts. These systems learn a mapping from the audio sig-
nal to phonemes, words and sentences. Modern state-of-art
ASR systems have shown impressive performance on estab-
lished datasets [31], can be adapted rapidly to new tasks
[11], and can process live speech from mobile devices [25].
Despite this, ASR tends to not give satisfactory results in
practical situations when no or only few resources (Human
effort, computation, and data) is available for development
and tuning, which prevents its use as a crucial aid for the
deaf and hard of hearing.

The most commonly used metric for measuring the per-
formance of a speech recognition system is Word Error Rate
(WER). Figure 2 depicts how WER is calculated. The word
sequence that is put out by the speech recognizer (hypoth-
esis) can have a different length from the reference word
sequence (assumed to be the correct one). To calculate
WER, first the reference is aligned with the hypothesis us-
ing dynamic programming. This alignment is not unique,
but allows us to calculate the minimum number of inser-
tions, deletions and substitution operations that need to be
performed on the reference in order to turn it into hypothe-
sis. The insertions, deletions and substitution are treated as
errors and the ratio of the sum of these errors to the num-
ber of words in the reference gives us WER. This kind of
a metric, however, does not provide any information about
types of errors that are made and therefore, further error
analysis is required to focus research efforts. It is generally
believed that lower WER corresponds to better performance
in a given application. However, [35] shows that this may
not always be true.

One of the reasons for ASR’s poor performance in use
cases like captioning is the constraint of producing real-time
output. This allows the ASR to work with only small models
and it tends to produce sub-optimal output. Poor acoustics
[11] at the venue, use of unadapted models, out of vocabu-
lary words (words not seen by the system before) and boot-
strapping a recognizer for a new domain are other major
causes for poor performance, which are hard for non-expert

users of ASR to overcome [18, 17]. Natural language under-
standing, which is at the core of ASR technology, has been
categorized as an AI-complete problem [32]. It is considered
that AI-complete problems can not be completely solved by
present day computer technology alone, but would require
human computation as well.

2.2 Human Computation and Crowdsourcing
Human computation [33] is the process of engaging people

in computational processes, typically to solve problems that
computers cannot yet solve alone, such as those involving
understanding image or audio content [2]. Human-powered
systems have become more feasible and impactful in recent
years due to the rise of readily-available workers on crowd-
sourcing platforms, who can be recruited within a matter of
seconds [23, 3, 7].

The accessibility community has long engaged support
from other people to help provide accommodations [4, 5].
Crowdsourcing for human computation allows this notion
to be expanded beyond one’s local community, to online
platforms of people who help both out of generosity and to
earn a living [6]. People with disabilities have also found
advantages working on crowd platforms, such as the ability
to work from home, when they are able, etc. [36]

To generate captions even in settings where ASR cannot
do so reliably, recent work has leveraged human computa-
tion to provide high quality transcription [10, 12, 24, 22, 20].
Large online crowdsourcing platforms such as Amazon’s Me-
chanical Turk 1 provide general purpose platforms for human
computation, and see tens of thousands of tasks related to
transcription posted. Due to its scale, some crowdsourcing
platforms even have special-purpose portals for transcrip-
tion, such as Crowdsource 2, and other platforms have arisen
as special-purpose crowdsourcing services for transcription,
such as Casting Words 3.

Research in this area has sought to improve the efficiency,
accuracy, and scope of these crowd-powered methods. For
instance, Liem et al. [1] use an iterative, “dual pathway”
approach to generate and evaluate worker input based on
the input of others. This resulted in captions with over 96%
accuracy.

Scribe [19] goes beyond offline captioning services and al-
lows even non-expert typists to provide text captions with
less than a five second latency, where years of training would
have been required in the past. By synchronously coor-
dinating groups of workers, Scribe’s work-flow allowed for
new approaches to making workers’ individual tasks easier
to accomplish, such as decreasing the audio playback speed
without increasing latency [21].

[12] has looked at how crowd workers can be used to cor-
rect the captions directly and [34] demonstrate a tool that fa-
cilitates crowdsourcing correction of speech recognition cap-
tioning errors. However, to the best of our knowledge, there
has been no study till now that explores whether or when it
actually beneficial to manually edit ASR’s output.

3. METHODOLOGY
We conducted two studies to explore the importance of

1https://mturk.com
2http://www.crowdsource.com/solutions/transcription/
3https://castingwords.com/



ASR quality on its utility as a starting point for human
transcription. The first study used a between-subjects de-
sign, while the second study used a within-subjects design.
Each of these studies had two conditions. The first condi-
tion asked the participants to enter transcriptions for the
audio, with no ASR output provided. This time measure-
ment served as a baseline for the second condition, where
participants were asked to edit ASR output of varying error
rates, instead of needing to write it from scratch.

3.1 Apparatus
To facilitate data collection, we developed a web-based

captioning platform (Figure 3). This interface consisted of
an audio player and a text box into which workers could type
their transcription. The web page was also instrumented to
record the interactions that participants had with the inter-
face, including click behavior and keystroke dynamics. We
also tracked how the participants navigated the audio dur-
ing the study. To make audio navigation more convenient,
we provided key shortcuts that would allow the participants
to play/pause or go back 5 seconds in the audio. This al-
lowed the workers to navigate the audio without needing to
directly interact with the audio tag’s play/pause button or
progress bar. Shortcuts keys for audio navigation also make
our time measurements less noisy, as the participants can
now control the audio without using the mouse and keep
their hands on the keyboard all the time. When a partic-
ipant submits the transcription, we compare it against the
reference transcripts. The transcription is accepted only if it
is sufficiently accurate, otherwise they are asked to continue
to improve it further. This mechanism ensures that our time
measurements compare similar-quality transcriptions.

3.2 Data set and Preparation
For this study, we used the TEDLIUM [30] dataset, which

is a collection of TED talks. The popular Kaldi speech
recognition toolkit [29] was used for generating ASR tran-
scriptions of different quality. We have worked extensively
with both the TEDLIUM dataset and Kaldi, and currently
achieve a baseline WER performance of 15%.

ASR transcripts of varying quality were generated by chang-
ing the ‘beam width’ parameter in the speech decoder. For
the purpose of this study, 16 one minute long clips were se-
lected randomly from the TEDLIUM development test set.
While relatively short, these clips are long enough that par-
ticipants cannot simply remember what is being said. They
will also likely lose context and need to search within the
audio stream to find their place. We decoded this set of 16
clips 9 times, with different ‘beam width’ parameter result-
ing in real ASR transcripts with WER ranging from 15% to
55% at rough intervals of 5%. We believe that this range
is realistic and ecologically valid: the best real-time systems
on standard English tasks such as TEDLIUM or Switch-
board perform at about 15% WER [29, 27], while 35% can
be achieved on distant speech [11], and 55% WER is still
the reality for new domains or low resource languages [26].

3.3 Study Procedures
Participants were first asked to carefully read the instruc-

tions, which summarized the purpose and structure of our
study. The shortcut keys designed for convenient audio nav-
igation were described to them both in text and through a
visual diagram. Owing to the time sensitive nature of our

Table 1: Between subjects design

Types of
Tasks

Number of
tasks per
clip

Number
of clips

Number
of Tasks

from-
Scratch

1
16 160

Editing ASR
captions of
varying WER
(15%-55%)

9

Table 2: Within subjects design
Types of
Tasks

Number of tasks
per participant

Total number of
participants

from-Scratch 1
16Editing ASR

captions of
varying WER
(15%-55%)

9

Control Task 1

study, participants were given the opportunity to start the
experiment on their own accord. The audio and the text box
were only accessible after the participant agreed to start the
experiment. Once the participant submits their transcrip-
tion, the systems compares the input with the reference.
The worker’s response was accepted only if it had a WER
less than 10% as compared to the dataset’s ground truth.
We adopted this qualifying step to discourage spammers on
Mechanical Turk and also get time measurements that cor-
respond to high-accuracy transcriptions. A qualifying WER
threshold of 0% was not chosen to allow for minor errors by
the workers. Threshold of 10% WER was decided based on
our initial trials of the study which indicated that threshold
values lesser than 10% resulted in too many worker submis-
sions being rejected while with greater threshold values, risk
of accepting low quality transcriptions was foreseen.

3.3.1 Between Subjects Study
Our between-subjects study, summarized in Table 1, was

conducted on Amazon’s Mechanical Turk with 160 partici-
pants. As mentioned in Section 3.2, we conducted our study
on 16 randomly chosen one-minute clips from the TEDLIUM
dataset. For each clip we have 9 real ASR transcripts with
WER ranging from 15% to 55%. This resulted in 9 “edi-
tASR” tasks per clip where the participants had to correct
ASR generated captions. For each clip, we also had one
“from-Scratch” task, where the participant had to enter the
transcription for the audio without any ASR support. Con-
sequently, we had 10 tasks for each of the 16 clips, resulting
in a total of 160 tasks each of which were assigned to distinct
crowd participants.

3.3.2 Within Subjects Study
The within-subjects study (Table 2) was conducted on

Amazon’s Mechanical Turk with 16 participants. Latin square
design was used to control for variation across transcription
speeds. Each participant did 9 “editASR” tasks over the
complete spectrum of WER (15% - 55%), one “fromScratch”
task and one “control-task”. The “control task” was to tran-
scribe a minute long control clip without any ASR support.



Figure 3: The transcription interface used in our study. The text-box is pre-populated with ASR captions.
The participants were were previously informed of the shortcut keys that they could use to control the audio
playback using both text and visual diagram.

This control clip was kept common across all the partici-
pants. Participant’s latency measurement from the control
task was used to normalize their latency measurements ob-
tained for other tasks. This normalization enabled us to
compare latencies across participants with potentially dif-
ferent transcription speeds. We also ensured that the par-
ticipants worked on a different audio clip for every tasks to
safeguard against any potential learning effects. The 9 ed-
itASR tasks were presented in a randomized order to the
participants.

4. RESULTS
In this section we describe the findings from our study.

4.1 Between Subjects Study
Figure 4 shows the results from our experiments with one-

minute clips for our between study. By the time the ASR
transcripts exceed 30% WER, workers are again faster just
typing the content from scratch. This matches our results
from the five-second clips, and suggests that not all auto-
mated assistance is helpful when captioning audio. Note,
however, that after the 50% WER mark, the average la-
tency actually begins to decrease relative to the maximum
seen at approximately 45% WER.

To answer the question of why this initially unexpected de-
crease in latency occurs, we looked at the logs that tracked
how workers interacted with our captioning task. Specifi-
cally, one aspect of the interaction we logged was the length
of the current transcript that the worker was editing. Change
of 1-2 words indicate typical editing of a document or split-
ting of an existing word, while more represents multi-word
pasting or removal of text.

Figure 4: Average latency vs. WER for the be-
tween subjects design. Latency increases along with
the WER until it surpasses the from-scratch latency
at about 30 WER. After about 45% workers real-
ize that the ASR captions are not helpful anymore
and start deleting big chunks of ASR transcripts.
Hence the latecnies at higher WERs decrease and
start approaching the from-scratch measurements.

An important component of our setup is that workers are
provided with an ASR transcript to edit, however, there
is no guarantee that they actually do edit the existing text.
They could, instead, remove the provided text from the text-



EDIT
PHASE

REWRITE
PHASE

DELETE
PHASE

Figure 5: Word count log from one worker session
in our trials. At first, the worker changes words
or replaces them, resulting in the word count re-
maining mostly stable. Next, the worker begins to
add words to the transcript, without removing or
replacing others. This is essentially a rewrite step.
Finally, the worker removes the incorrect content
(about 50% of the total words at that point), and
ends in a transcript with under 10% WER. A simi-
lar and equivalent pattern can be seen when workers
first delete all content, then rewrite it based on the
audio they heard – this results in a mirrored version
of this plot.

box and then enter their own from scratch. These types
of ‘clearing’ behaviors can appear in multiple forms. One
example would be to first clear the text then rewrite it, while
another option would be to write the text then clear the
initial content once done. Figure 5 shows an example of
the latter type of clearing. The actual clear event might be
preceded by initial in-place edits, which appear as changes
of few or no words in the logs.

To see if this behaviors could be responsible for the de-
crease in latency as workers see higher levels of initial error
in the text, we compared the higher and lower half of our
WER range. Figure 6 shows a side-by-side comparison of
the word count traces over time.

Looking at the number of occurrences of workers removing
more than 25% of the transcript in a given time step, we
observe that for WERs under 30%, just 7.12% of workers
cleared a large portion of text. For WERs under 50%, this
ratio increases to 12.28%. For WERs of over 50% (where the
latencies begin to decrease from their maximum), we see that
42.52% of workers clear the text they were given. This very
large jump may explain why workers are less slowed down by
increased error rates as the overwhelming number of errors
in a given transcript becomes more evident up front.

4.2 Within Subjects Study
Figure 7 shows the variation of averaged normalized la-

tencies for “editASR” tasks corresponding to different word
error rates. We normalize the latency measurements of par-
ticipants with their latency measurements on the control
clip. This takes care of any variation that may arise because
of different transcription speeds between participants. We
again see that the participants benefit from ASR captions
if the word error rate performance is low (< 30%). Sim-
ilar to the first study, we observe that ASR captions stop

Figure 7: Normalized average latency vs. WER for
within subjects design. Latency measurements for
each participant were normalized with their latency
measurement on the control clip. This allowed us
to compare results across participants without wor-
rying about any variation that may arise because
of different transcription speeds. Notice that ASR
captions are helpful only when WER < 30%.

becoming helpful at word error rates around 30%. Above
30% WER, participants take more time correcting the ASR
captions than writing them “from scratch” without any ASR
support. As opposed to the first study, here we do not ob-
serve any drop in latencies with increasing WERs. The curve
is generally non-decreasing, except for a downward “kink” at
around WER of 40%. One potential explanation for this be-
havior can be attributed to the fact that every participant is
exposed to all the levels of word error rates. Being exposed
to good transcripts and having seen that they can be help-
ful, the participants do not give up on bad transcripts soon
enough. A one way ANOVA performed on the normalized
data from this study yielded a value of 0.01, which suggests
that this increasing trend is significant.

5. DISCUSSION
Both studies show that speech recognition can save cap-

tionists’ time if it is accurate enough. More specifically, we
observe that there exists a threshold around 30% WER. If
the WER of the speech recognition system is much greater
than 30%, humans are better off writing everything from
scratch rather than getting help from automatic speech recog-
nition. While we expect that the specific WER will vary de-
pending on such variables as the content of the speech, the
speech rate, and the individual captionist’s typing speed,
establishing this average rate may help drive the design of
future technologies to improve captioning.

One challenge for workers was recognizing the quality (and
a resulting best transcription strategy). In Figure 4, we ob-
serve that even though automatically generated transcripts
stop becoming useful after WER of 30%, the workers are
only able to realize that after 45%. Automated approaches
could help not just by providing accurate transcriptions as a
starting point, but may also be usefully employed to under-
stand what part of the transcription is accurate enough to
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Figure 6: 144 participants’ word count plots. On the left, the lower WER half of our experiments, and on
the right, the higher WER half. The drastic increase in workers who remove large blocks of text (sudden
drops in word count when a worker deletes the initial ASR transcript they were given, as shown in Figure
5) is tied to increased WER of the initial ASR transcript provided.

be kept as a starting point. This is challenging because con-
fidence estimates output by ASR technology are unreliable,
and ASR quality can vary considerably over short spans.

However, even if we cannot automatically detect when
these variations occur, our results show that given high er-
ror rates, workers can identify when it would be easier to
just work from a blank slate, and avoid the inefficiencies
associated with large sets of corrections.

6. CONCLUSION AND FUTURE WORK
In this paper we explored the effects of ASR quality on

its utility as a starting point for human transcription. Our
results match our expectations that ASR is most useful as
a starting point when it is fairly accurate. By examining
worker behavior, we identified common strategies that work-
ers use with transcription starting points of different qual-
ities. Insight into how workers correct transcript will en-
able us to design captioning interface to aid their productiv-
ity. For example, captioning interfaces might try to “detect”
when the WER increases above a certain threshold and stop
providing ASR support altogether. This will be a challenge
as “ground truth” is generally needed to calculate WER.
However, ASR also generates confidence measures for every
word is puts out. This suggests that future research should
focus on predicting WER from the confidence scores gener-
ated by ASR. The same type of thresholds we define here
may be definable in terms of confidence measures, instead
of WER. Unfortunately the quality of a recognizer’s word
confidence measures can vary even more than the quality of
the words themselves.

Our findings also suggest new methods for integrating
high-error ASR output with human input. In our study,
we have shown that ASR can get most of the words correct
and still hurt performance. Future work will explore how we
can design and develop captioning interfaces that may make
error prone ASR more helpful. For example, using ASR to
suggest words (like an auto-complete function), so that the
worker does not have to correct erroneous transcripts but
still some helpful information/words can be suggested. Be-
ing able to trade off human and machine ability, and how
one affects the other, is a key aspect of effective hybrid in-
telligence systems, and can greatly benefit human-powered
access technology.
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